Practical Artificial Intelligence Programming With Java

Third Edition

Mark Watson
Copyright 2001-2008 Mark Watson. All rights reserved.
This work is licensed under a Creative Commons
Attribution-Noncommercial-No Derivative Works
Version 3.0 United States License.

November 11, 2008

Contents

Pr	eface	•	X
1	1.1 1.2 1.3 1.4 1.5 1.6	Other JVM Languages Why is a PDF Version of this Book Available Free on the Web? Book Software Use of Java Generics and Native Types Notes on Java Coding Styles Used in this Book Book Summary	1 1 2 2 2 3
2	Sea 2.1 2.2 2.3 2.4 2.5	Representation of Search State Space and Search Operators Finding Paths in Mazes Finding Paths in Graphs Adding Heuristics to Breadth First Search Search and Game Playing 2.5.1 Alpha-Beta Search 2.5.2 A Java Framework for Search and Game Playing 2.5.3 Tic-Tac-Toe Using the Alpha-Beta Search Algorithm 2.5.4 Chess Using the Alpha-Beta Search Algorithm	22 22 24 29 34
3	3.1 3.2 3.3 3.4	Logic	45 47 47 48 49 52
4	3.5	Suggestions for Further Study	54 57
	4.2 4.3 4.4 4.5	ing Data Requirements RDF: The Universal Data Format Extending RDF with RDF Schema The SPARQL Query Language Using Sesame	58 59 62 63

Contents

	4.6		69
	4.7	6 1	71
	4.8	Material for Further Study	72
5	Exp	pert Systems	73
	5.1	•	75
	5.2	The Drools Rules Language	75
	5.3		77
	5.4		81
			82
			85
			88
	5.5		90
			91
			93
			95
	5.6	1 1	97
_	0	and Alexandrian	^^
6		9	99 99
	6.1		99 01
	6.2	•	
	6.3	Finding the Maximum Value of a Function	05
7			09
7	7.1	Hopfield Neural Networks	10
7	7.1 7.2	Hopfield Neural Networks	10 11
7	7.1 7.2 7.3	Hopfield Neural Networks	10 11 14
7	7.1 7.2 7.3 7.4	Hopfield Neural Networks	10 11 14 16
7	7.1 7.2 7.3	Hopfield Neural Networks1Java Classes for Hopfield Neural Networks1Testing the Hopfield Neural Network Class1Back Propagation Neural Networks1A Java Class Library for Back Propagation1	10 11 14
7	7.1 7.2 7.3 7.4	Hopfield Neural Networks1Java Classes for Hopfield Neural Networks1Testing the Hopfield Neural Network Class1Back Propagation Neural Networks1A Java Class Library for Back Propagation1	10 11 14 16
7	7.1 7.2 7.3 7.4 7.5 7.6	Hopfield Neural Networks1Java Classes for Hopfield Neural Networks1Testing the Hopfield Neural Network Class1Back Propagation Neural Networks1A Java Class Library for Back Propagation1Adding Momentum to Speed Up Back-Prop Training1	10 11 14 16 19
	7.1 7.2 7.3 7.4 7.5 7.6	Hopfield Neural Networks	10 11 14 16 19 27
	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1	Hopfield Neural Networks	10 11 14 16 19 27 29 30
	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32
	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1	Hopfield Neural Networks	10 11 14 16 19 27 29 30
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36
	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1 9.2	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37 41
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37 41 44
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1 9.2	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37 41 44 44
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1 9.2	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37 41 44
8	7.1 7.2 7.3 7.4 7.5 7.6 Mac 8.1 8.2 8.3 8.4 Stat 9.1 9.2	Hopfield Neural Networks	10 11 14 16 19 27 29 30 32 34 36 37 41 44 44

		9.3.4	Suggested Project: Using WordNet Synonyms to Improve	
			Document Clustering	150
	9.4	Autom	atically Assigning Tags to Text	
	9.5		lustering	
	9.6		g Correction	
		9.6.1	GNU ASpell Library and Jazzy	
		9.6.2	Peter Norvig's Spelling Algorithm	
		9.6.3	Extending the Norvig Algorithm by Using Word Pair Statistic	
	9.7	Hidden	Markov Models	
		9.7.1	Training Hidden Markov Models	
		9.7.2	Using the Trained Markov Model to Tag Text	
10	Info	rmatior	n Gathering	177
	10.1	Open C	Calais	177
			ation Discovery in Relational Databases	
			Creating a Test Derby Database Using the CIA World Fact-	
			Book and Data on US States	182
		10.2.2	Using the JDBC Meta Data APIs	
			Using the Meta Data APIs to Discern Entity Relationships .	
	10.3		to the Bare Metal: In-Memory Index and Search	
			ng and Search Using Embedded Lucene	
			ng and Search with Nutch Clients	
			Nutch Server Fast Start Setup	
			Using the Nutch OpenSearch Web APIs	
11	Con	clusior	ns	207

Contents

List of Figures

directed graph representation is shown on the left and a two- dimensional grid (or maze) representation is shown on the right. In both representations, the letter R is used to represent the current po- sition (or reference point) and the arrowheads indicate legal moves generated by a search operator. In the maze representation, the two grid cells marked with an X indicate that a search operator cannot	
	7
	8
	1/
	10
	14
	15
	21
	21
	23
UML class diagrams for game search engine and tic-tac-toe	30
UML class diagrams for game search engine and chess	35
plays to maximize the mobility of its pieces and maximize material advantage using a two-move lookahead. The first version of the chess program contains a few heuristics like wanting to control the	36
Continuing the first sample game: the computer is looking ahead	37
	41
Continuing the second game with a two and a half move lookahead.	
the value of moving the queen early in the game	42
Overview of how we will use PowerLoom for development and deployment	46
Layers of data models used in implementing Semantic Web applications	58
Java utility classes and interface for using Sesame	68
	dimensional grid (or maze) representation is shown on the right. In both representations, the letter R is used to represent the current position (or reference point) and the arrowheads indicate legal moves generated by a search operator. In the maze representation, the two grid cells marked with an X indicate that a search operator cannot generate this grid location. UML class diagram for the maze search Java classes Using depth first search to find a path in a maze finds a non-optimal solution UML class diagram for the graph search classes Using depth first search in a sample graph Using breadth first search in a sample graph Using breadth first search in a sample graph Alpha-beta algorithm applied to part of a game of tic-tac-toe UML class diagrams for game search engine and tic-tac-toe UML class diagrams for game search engine and chess The example chess program does not contain an opening book so it plays to maximize the mobility of its pieces and maximize material advantage using a two-move lookahead. The first version of the chess program contains a few heuristics like wanting to control the center four squares. Continuing the first sample game: the computer is looking ahead two moves and no opening book is used. Second game with a 2 1/2 move lookahead. Continuing the second game with a two and a half move lookahead. We will add more heuristics to the static evaluation method to reduce the value of moving the queen early in the game. Overview of how we will use PowerLoom for development and deployment Layers of data models used in implementing Semantic Web applications

List of Figures

5.1	them	74
5.2	Initial state of a blocks world problem with three blocks stacked on top of each other. The goal is to move the blocks so that block C is on top of block A	82
5.3	Block C has been removed from block B and placed on the table	82
5.4	Block B has been removed from block A and placed on the table	84
5.5	The goal is solved by placing block C on top of block A	85
6.1	The test function evaluated over the interval [0.0, 10.0]. The maximum value of 0.56 occurs at x=3.8	100
6.2		101
7.1	Physical structure of a neuron	110
7.2	Two views of the same two-layer neural network; the view on the right shows the connection weights between the input and output	
		117
7.3	Sigmoid and derivative of the Sigmoid (SigmoidP) functions. This	11,
		118
7.4	Capabilities of zero, one, and two hidden neuron layer neural net-	
	works. The grayed areas depict one of two possible output values	
	based on two input neuron activation values. Note that this is a	
	two-dimensional case for visualization purposes; if a network had	
	ten input neurons instead of two, then these plots would have to be	
	ten-dimensional instead of two-dimensional	119
7.5	Example backpropagation neural network with one hidden layer	120
7.6	Example backpropagation neural network with two hidden layers	120
8.1	Running the Weka Data Explorer	131
8.2	Running the Weka Data Explorer	131

List of Tables

2.1	Runtimes by Method for Chess Program	44
6.1	Random chromosomes and the floating point numbers that they encode	106
9.1	Most commonly used part of speech tags	139
9.2	Sample part of speech tags	167
9.3	Transition counts from the first tag (shown in row) to the second tag (shown in column). We see that the transition from NNP to VB is	
	common	169
9.4	Normalize data in Table 9.3 to get probability of one tag (seen in row) transitioning to another tag (seen in column)	171
9.5		
	shown in this table	172

List of Tables